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ABSTRACT

A large eddy simulation (LES) with the dynamic
Smagorinsky-Germano subgrid-scale (SGS) model is used to
study the dispersion of sclid particles in a turbulent boundary
layer. Solid particles are tracked in a Lagrangian way. The res-
olution of the Lagrangian equation of the solid particle motion
requires the knowledge of the instantaneous velocity of the sur-
rounding fluid. This velocity is considered to have a large-scale
part (directly computed by the LES) and a small-scale part.
The subprid-scale velocity of the surrounding fluid is given by
a three-dimensional Langevin model. The stochastic modael is
written in terms of 5G5S statistics at a mesh level. In addi-
tion to this, an appropriate Lagrangian correlation timescale is
considered in order to include the influences of gravity and in-
ertia of the solid particle. The results of the LES are compared
with the wind-tunnel experiments of Nalpanis et al. (1993 J.
Fluid Meech. 251 661-685) and of Taniere et al. (1997 Ezp. n
Fluids 23 463-471) on sand particles in saltation and in mod-
ifled saltation, respectively, over a flat bed. Our simulations
predict the quantitative features of both experiments.

INTRODUCTION

The entrainment, transport and deposition of dust-sized
sediment can have a severe impact on the natural environment
and human activity. For a sufficiently strong wind, dust parti-
cles can be entrained by aerodynamic forces of by the impact
forces of saltating grains which return to the soil and interact
energetically. This last phenomenon 18 considered as the main
source of dust particle entrainment and erosion (Shac et al.
1993).

Owing to an increasing interest in environmental problems,
considerable attention has been focused on the prediction of
sand particle motion in atmospheric turbulent boundary lay-
ers. Since the pioneering work of Deardorff (1970), LES has
become a well established tool for the study of turbulent flows
(Meneveau and Katz, 2000) as well as the transport of solid
particles in a variety of conditions (Wang and Squires, 1996;
Shao and Li, 1999). However, since only the motion of the
large scales 13 computed, the effect of the small scales on par-
ticle dispersion, motion or deposition must be either modeled

separately or neglected. In this study, a modified Lagrangian
stochastic model 1s coupled with a LES with the dynamic
Smagorinsky-Germano SGS model (Germano et al., 1991}, in
order to take into account the SGS motion of particles.

The subgrid-scale velocity of solid particles is given by a
modified three-dimensional Langevin model, which is written
in terms of the local SGS characteristics. This way, the La-
prangian stochastic model is entirely given by the quantities
directly computed by the LES with the dynamic Smagorinsky-
Germano SGS model, Germano et al. (1991). A modified
Laprangian correlation timescale is considered in order to in-
clude the influences of pravity and inertia of the solid particle.
In addition to this, inter-particle collisions and two-way cou-
pling are introduced.

The results of the computations are compared with the
wind-tunnel experiments of Nalpanis et al. (1993) and of
Taniere et al. (1997) on sand particles in saltation and modi-
fied saltation, respectively, over a flat bed.

LARGE-EDDY SIMULATION

A turbulent boundary layer flow iz computed using the
LES code ARPS 4.5.2. Details of the resolved equations and
subgrid closure are given in Aguirre et al. (2005). The conti-
nuity and momentum equations obtained by pgrid filtering the
Navier-Stokes equations are:
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where w; 18 the fluid velocity, p 18 the total pressure, v the

molecular kinematic viscosity, ¢ the density and 2 = 1,2,3
refers to the z (streamwise), ¥ (spanwise), and z (normal)
directions respectively. B; includes the gravity and the Cori-
oligs force. The dynamic Smagorinsky-Germano subgrid-scale
model (Germano et al., 1991) is used.

The dimensions of the computational domain in the stream-

wige, spanwise and wall-normal directions are, respectively,
le =30H,1ly =6H and {, = 2H, H being the boundary layer



depth. The pgrid is uniform in the zy-planes and stretched in
the z-direction by a hyperbolic tangent function.

THE MOTION OF SOLID PARTICLES

For particles with a density much pgreater than the den-
sity of the carrier fluid (ppfpf > 103), and with a diameter
dp smaller than the Kolmogorov scale, a simplified equation
of motion including only the drag and gravity forces can be

considered:
dz, (t
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¥, is the velocity of the particle, ¥ (#,(t),%) is the velocity
of the fluid at the particle position and g i1s the accelera-
tion of gravity. 7, = ppdi/18psv is the particle relaxation
time and Re, = |}, — ¥|d/v is the particle Reynolds number.
f(Rep) =14 0.15Re) %7 as proposed by Clift et ol. (1978).
Equation 2 is appropriate for describing the motion of smooth
rigid spheres. It neglects the influence of virtual mass and the
Basset history force on particle motion.

The driving fluid velocity ¥ (&p(%),%) is given by the ve-
locity field of the LES and a fluctuating subgrid component
determined by a modified Lagrangian stochastic model.

STOCHASTIC MODEL FOR THE SUBGRID-SCALE MO-
TION OF SOLID PARTICLES

Fluid particles

The subgrid-scale velocity of sclid particles is given by
analogy with the the subegrid-scale stochastic model for fluid
particle dispersion, Aguirre et al. (2005). Namely, the La-
prangian velocity of the fluid particle is given by:

vi(t) = % (Z(1) + vi(t) . (3)

This velocity is congidered to have an Eulerian large-scale part

@; (€(t)) (which is known) and a fluctuating SGS contribution

v’ (), which is not known and will be modeled by the stochastic

approach. The movement of fluid elements at a subgrid level

is given by a three-dimensional Langevin model:
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where dr; is the increment of a vector-valued Wiener process
with zero mean, (dn;) = 0, and variance dt, (dy;dr;) = dtds4.
The fluid particle velocity 1s given by a deterministic part
cxijv; and by a completely random part 3;;dn;. The coef
ficients ay; and (3;; are determined by relating the subgrid
statistical moments of ¢¥(#) to the filtered Eulerian moments
of the fluid velocity, in analogy with van Dop et al. (1986) who
developed this approach in the case of a classic Reynolds aver-
aged decomposition. Knowing that the subgrid turbulence is
homogeneous and isotropic (basic assumption of the LES), the
velocity of fluid elements given by the Lanpgevin model writes
as:
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where T, 18 the Lagrangian correlation timescale, given by:
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% is the subegrid turbulent kinetic energy, & is the suberid tur-
bulent dissipation rate and Cp is the Lagrangian constant.
The large-scale velocity of the fluid particle is directly com-
puted by the LES with the dynamic Smagorinsky-Germano

SGS model. An additional transport equation for k& is re
solved. This equation is deduced from Deardorff (1980):
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where & = C:k%?/A. The terms on the right-hand side of
equation 7 corregpond to the production by buocyancy, the

production by shear, the diffusion of k and the dissipation.
Since we are interested in neutral flows the potential temper-
ature variation is nepglected. The turbulent eddy viscosity K.,
18 computed by a dynamic procedure as described in the pre-
vious section.

Solid particles
Because of its inertia effects and its different responses to
pravity, solid particles deviate from the fluid element that orip-
inally contained them, inducing a decorrelation. The main
difficulty lies in the determination of the fluid particle veloc-
ity along the solid particle trajectory, ¥ (#p(¢),¢). This fluid
velocity is computed with equation 3 and by analogy with
equation 5 where Tt is replaced by T%, a Lagrangian decor-
relation timescale of the fluid velocity along the solid particle
trajectory. In order to account for gravity and inertia effects,
we expect the modified timescale to be shorter than the fluid
Lagrangian timescale 7. The velocities to which a solid par-
ticle is subjected will not be as well correlated as those to
which a fluid particles is subjected. Moreover, as noted by
Rodgers and Eaton (1990), a frequency measured in a La-
prangian frame is always smaller than a frequency measured
in an Eulerian one. Different forms have been previously de-
veloped for 7%, as Sawford and Guest (1991), Zhuang et al.
(1989) for example. We propose the following formulation:
o 12 8)
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where ogrgy and ognert are the coefficients relative to gravity
and inertia effects. The pravity effect is estimated following
the approximation of Csanady (1963). Csanady proposed an
interpolation between the Lapgranpgian correlation for vanish-
ing inertia and small terminal velocity vy and the Eulerian
correlation for large vy;. In the direction parallel to gravity,
with 5 an empirical constant, ag,rq. 18 given by:

S \/1+ (22)", ©)

where & = waE/'B.

The inertia effect 18 evaluated in the limit of large iner-

tia and vanishing vy;. A turbulent structure (length scale 1),
passing by a the moving particle would have a frequency of;
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where vy represents the Lagrangian correlation timescale,

For the limiting case, when pravity and inertia effects are
negligible, the asymptotic behavior is satisfied. Recently,
Shao (1995) and Reynolds (2000) have pointed out some con-
tradictions relative to the structure function of ¢ (& (£), )
and sugpested that this velocity should be evaluated using a
fractional Langevin equation. In fact, Wiener increments nec-
esgarily lead to a structure function proportional to d¢ when,
in the limiting case of large drift velocity and negligible inertia,
the driving fluid velocity correlation approaches the Eulerian
space-time correlation which is proportional to dt?/3. How-
ever, the saltating particles being far from these limiting cases,
in a way identical to Reynoclds (2000}, we will forsake consider-
ations of the structure function for increments in fluid velocity
and treat dn; as increments of a Wiener process.

PARTICLE COLLISIONS

The developed inter-particle collision model relies on par-
ticle pairing and the calculation of the collision probability
according to the kinetic theory. This model is inspired by the
inter-particle collision model of Sommerfeld (2001}, where the
generation of a fictious ceollision partner is replaced by particle
pairing..

The domain ig divided in boxes that are small compared to
the length scale of the flow (Pope, 1885). In each box, at each
time step, solid particles are randomly selected by pairs. For
each pair (4, ) the probability for the occurrence of a collision
is determined. This collision probability is calculated as the
product of the time step df and the collision frequency given
by the kinetic theory, Sommerfeld (2001):
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where dp ; and dp ; are the particle diameters, |Up s — ¥ 4| is
the instantanecus relative velocity of the selected pair and n,
is the number of particles per unit volume in the respective
box. In order to decide weather a collision takes place, a
random number £ from a uniform distribution in the interval
[0:1] is generated. A collision cccurs when the random number
becomes smaller than the collision probability,i.e. if& < P.;.

The simulated concentration, given by the number of par-
ticles obtained by the simulation in each box, and thus de-
pendent on the number of computed trajectories, must be
corrected in order to obtain the corresponding actual num-
ber of particles per unit volume, ny,, which is used for the
prediction of the collision probability. The correction factor
depends on the loading ratio and on the total number of sim-
ulated trajectories.

The relations of the calculation of the post-collision ve-
locities of the considered particles in the co-ordinate system
where one particle is stationary are given by the momentum
equations for an oblique central collision. By solving the mo-
mentum equations in connection with the Coulomb’s law of
friction and neglecting particle rotation, one obtains the fol-
lowing equations for the determination of the velocity compo-
nents of the considered particles after collision, (v’ (T
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For a non-sliding collision:
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For a sliding collision:

1
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where the condition for a non-sliding collision is:
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Here e is the coefficient of restitution, p is the coefficient of
friction, and my s and 1y, 4 are the masses of the considered
particles. Finally, the velocities of the considered particles are
re-transformed in the original co-ordinate system.

TWO-WAY COUPLING

Influence of the presence of particles on the fluid motion has
not yet been fully understood. In some cases, e.g. bubble flow,
the presence of particles may produce velocity fluctuations of
the surrounding fluid whose wavelength is smaller than the
particle diameter.

However, it was numerically shown by Pan and Banerjee
(1996) that the particles work as if they were an extra burden
to the fluid when the particles are small and have much larger
density than the surrounding fluid, as is the case in the present
study. In such case, the momentum transfer from particles to
fluid can be successfully modeled by adding the reaction force
against the surface force acting on the particle to the Navier-
Stokes equation, equation 1. This model is sometimes referred
to as the force coupling model in contrast to the velocity cou-
pling model (Pan and Banerjee, 1996} in which the velocity
disturbance arcund the particle is considered.

When two-way coupling is modeled by the force coupling
model, as mentioned above, an extra term appears in the
transport equation of the subgrid turbulent kinetic energy,
equation 7:

—_—— (I) —— e
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f;ﬂ 18 the fluctuation component of the force from particles to
fluid and ¢y is the volume fraction in the grid cell occcupied
by the particles. Although several formulas have been pro-

—_—

posed for the approximation of w}w} (Zp(t),t), the model by
Porahmadi and Humphrey (1983)

Lul (Zp(t),t) =

(17)

has been adopted for simplicity. Therefore, the additional
term in the transport equation of the subgrid turbulent kinetic
energy writes as:

oy 2
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In the case of sand particles in saltation, even very close
to the bed the volume fraction ®,, is smaller than 10~*. The
two-way coupling as well as the inter-particle collisions have



a very small influence on the flow dynamics and particle field
characteristics.

MODEL PREDICTIONS AND DISCUSSION

Saltating particles over a sand bed, Nalpanis et al. (1993)

A full description of the experimental facility and results
can be found in Nalpanis et al. (1993). Here, the main char-
acteristics of the experiment necessary for understanding the
simulations are given.

A turbulent boundary layer over a sand bed is generated.
Downwind of the vorticity generators the floor is covered with
loogse sand with a density of 265Dkg/m3 and with a median
diameter of 188 . The size distribution of the sand particles
18 log-normal with geometric standard deviations of 1.18. Pro-
files of mass flux and wind speed are measured at distances
2m, 4 and 6m from the upwind edge of the sand bed. Only
the measurements made at 61 are presented.

The height H of the turbulent boundary layer is 0.2m and
the roughness length is zp = 100mm. The mean velocity at
the boundary layer edge U, is 6.3m¢/s and the friction veloc-
ity s« = 0.35m/s. Figures 1 and 2 show predicted profiles
of mean velocity and turbulent kinetic energy compared to
the experimental data. The turbulent kinetic enerpgy profile
is compared to the normalized profile measured by Fackrell
and Robins (1982), because the corresponding profile was not
published by Nalpanis et al. (1993). The mean values are
obtained by averaging the fluctuating field over the horizontal
extent of the domain and also over a time period sufficiently
long to obtain stable statistics. The LES resulted in a fairly
accurate prediction of the mean velocity.

For the turbulent kinetic energy the SGS part, the resolved
part and the total of the calculated field are separated. The
SGS contribution k& is obtained from equation 7. The LES
shows discrepancies near the wall, where the fluctuations are
mostly parameterized. Probably, the increasing anisotropy
near the wall is not correctly represented by our correction.
In this study, we only consider particles in saltation, which
are almost not influenced by the turbulent fluctuations of the
flow,

The vertical profile of mean concentration at the end of
the saltating bed is shown on figure 3. The computed con-
centration profile is in good agreement with the experimental
results. Even though the turbulence is practically not resclved
near the wall, the mean concentration profile of the saltating
sand prains is properly simulated. Figure 4 shows the com-
puted time evolution of the mean rise height, compared to the
measured mean value. Our results are in pood agreement with
the experimental results of Nalpanis et al. (1993) as well as
with normalized predictions of Owen (1964).

Sand particles in modified saltation, Taniere et al. (1997)

Particles in modified saltation in a turbulent boundary
layer over a flat bed are studied in this experiment. Parti-
cles with a density of 25DDkgfm3 and with a median diameter
of 60wm, are introduced into the flow by means of an upward
moving piston which is driven by an electric motor. Profiles of
wind speed, fluid velocity fluctuations, particle velocities and
masgs flux profiles are measured at the end of the domain.

The height H of the turbulent boundary layer is 0.07m:, the
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Figure 1: Vertical profile of streamwise mean velocity. Line -
LES: Square - FACKRELL & ROBINS (1982); Triangle - log law
w/ue = 1/klog(z/z0); Diamond - NALPANIS et al. (1993).
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Figure 2: Vertical profile of turbulent kinetic enerpgy. Lines
LES: Broken line - resolved; Dashed-dotted - sub-grid; Full
line - total; Squares - measurements of Fackrell and BR.obins
(1982).

mean velocity at the boundary layer edge U. is 10.6me/s and
the friction velocity v, = 0.39m/s. Figures 5 and 6 show pre-
dicted profiles of mean velocity and turbulent kinetic energy
compared to the experimental data. The turbulent kinetic en-
ergy profile is compared to the normalized profile measured by
Fackrell and Robins (1982}, because the corresponding profile
was not published by Taniere et al. {1997). The LES resulted
in a. fairly accurate prediction of the mean velocity and of the
turbulent kinetic energy (after correction).

The vertical profile of mean concentration at the end of the
domain is shown on figure 7. The computed concentration
profile is in good agreement with the experimental results. In
figure 8, the dimensionless mean velocity profile of the solid
phase 18 digplayed and compared with the experimental results
on one hand and with the computed fluid velocity profile on
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Figure 3: Vertical profile of sand particle concentration at 6.
Line - LES; Squares - experimental results of Nalpanis et al.
(1993).
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Figure 4: Time evolution of the mean rise height. Line - LES;
Dashed-dotted - Nalpanis et al. (1993); Chain - Owen (1964).

the other. The fluid and particle distributions have similar
shapes. The computed profiles show good agreement with the
experimental results. However, Taniere et al. (1997) found
that the mean particle velocity is slightly lower than that of
the fluid except very close to the wall. Due to particle-wall
interactions the mean velocity of the dispersed phase reaches
a nonzero value at the wall.

CONCLUSION

A LES coupled with a Lagrangian stochastic model has
been applied to the study of solid particle dispersion in a
turbulent boundary layer. Solid particles are tracked in a
Lagrangian way. The velocity of the fluid particle along the
solid particle trajectory is considered to have a large-scale part
and a small-scale part given by a modified three-dimensional
Langevin model using the filtered SGS statistics. An appro-
priate Lagrangian correlation timescale is considered in order
to include the influences of pravity and inertia. Two-way cou-
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Figure 5: Vertical profile of streamwise mean velocity. Line -
LES: Squares - measurements of Fackrell and Robins (1982);
Triangle - measurements of Taniere et al. (1997).
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Figure 6: Vertical profile of turbulent kinetic energy. Lines
LES: Broken line - resclved; Dashed-dotted - sub-grid; Full
line - total; Squares - measurements of Fackrell and Robins
(1982).

pling and inter-particle collisions are also taken into account.
The results of the computations are compared with the wind-
tunnel experiments of Nalpanis et al. (1993) and of Taniere
et al. (1997). Discrepancies near the lower wall are due to
the fact that turbulence in this region is modeled rather than
resolved. The LES coupled with the Lapgrangian stochastic
model provides good description of the dispersion of sand par-
ticles in a turbulent boundary layer. Vertical profiles of mean
concentration and particle phase velocity match well with the
experimental proflles.
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